

Description:

Each OPR5011 device is a hybrid sensor array that consists of three channels of the OPTEK OPC8332 differential optical comparator ('TRI-DOC") IC. The single chip construction ensures very tight dimensional tolerances between active areas.

Specifically designed for high-speed/high-resolution encoder applications, the open collector output switches based on the comparison of the input photodiode's light current levels. Logarithmic amplification of the input signals facilitates operation over a wide range of light levels.

The surface-mountable opaque polyimide package shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions, while the gold-plated wraparound contacts provide exceptional storage and wetting characteristics.

Applications:

- High-speed applications
- High-resolution applications
- Applications requiring a wide range of light levels

Ordering Information						
Part Number	Sensor	\# of Elements	Icc (mA) Typ / Max	Optical Hysteresis (\%) Typical	Optical Offset (\%) Min / Max	
OPR5011	Differential Optical Comparator	3	$9 / 20$	40.00	$-40 /+40$	

Pin \#	Description						
1	B - Output	5	N.C.	9	Z + Trim	13	B + Trim
2	B - Vcc	6	A - Output	10	Z -Trim	14	B -Trim
3	A + Trim	7	A - Vcc	11	Z - Output		
4	A -Trim	8	Common	12	Z - Vcc		

RoHS OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optical Comparator Array OPR5011

Application Circuit - OPR5011

Notes:
(1) The 74L2)4 is recommended as a means of isolating the "DOC" comparator circuitry from transients induced by inductive and capacitive loads.
(2) It is recommended that a decoupling capacitor be placed as close as possible to the device.

Block Diagram - OPC8332

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage and Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Supply Voltage	24 V
Output Voltage	24 V
Output Current	14 mA
Power Dissipation	500 mW
${\text { Solder reflow time within } 5^{\circ} \mathrm{C} \text { of peak temperature is } 20 \text { to } 40 \text { seconds }^{(1)}}^{250^{\circ} \mathrm{C}}$	

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I_{CC}	Supply Current	-	9	20	mA	$\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$
V_{OL}	Low Level Output Voltage ${ }^{(2)}$	-	0.3	0.4	V	$\mathrm{I}_{\mathrm{LL}}=14 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
$\mathrm{I}_{\text {OH }}$	High Level Output Current ${ }^{(3)}$	-	0.1	1	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}$
OPT-HYS	Optical Hysteresis ${ }^{(4)(7)}$	-	40	-	\%	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$
OPT-OFF	Optical Offset ${ }^{(4)(7)}$	-40	10	+40	\%	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$
$\mathrm{f}_{\text {max }}$	Frequency Response ${ }^{(5)}$	-	1	-	MHz	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
t_{l}	Output Rise Time ${ }^{(6)}$	-	1	-	$\mu \mathrm{s}$	
$t_{\text {hl }}$	Output Fall Time ${ }^{(6)}$	-	300	-	ns	

Notes:
(1) Solder time less than 5 seconds at temperature extreme.
(2) $\operatorname{Pin}(+)=100.0 \mathrm{nW}$ and $\operatorname{Pin}(-)=1.0 \mu \mathrm{~W}$.
(3) $\operatorname{Pin}(+)=1.0 \mu \mathrm{~W}$ and $\operatorname{Pin}(-)=100.0 \mathrm{nW}$.
(4) Pin (-) is held at $1.0 \mu \mathrm{~W}$ while Pin (+) is ramped from $0.5 \mu \mathrm{~W}$ to $1.5 \mu \mathrm{~W}$ and back to $0.5 \mu \mathrm{~W}$.
(5) Pin (+) is modulated from $1.0 \mu \mathrm{~W}$ to $2.0 \mu \mathrm{~W}$. Pin (-) is modulated from $1.0 \mu \mathrm{~W}$ to $2.0 \mu \mathrm{~W}$ with phase shifted 180° with respect to Pin $(+)$. Use $100 \mathrm{k} \Omega$ trimpot to set the output signal to 50% duty cycle for maximum operating frequency.
(6) Measured between 10% and 90% points.
(7) Optical Hysteresis and Optical Offset are found by placing $1.0 \mu \mathrm{~W}$ of light on the inverting photodiode and ramping the light intensity of the non-inverting input from $0.5 \mu \mathrm{~W}$ up to $1.5 \mu \mathrm{~W}$ and back down. This will produce two trigger points - an upper trigger point and lower trigger point. These points are used to calculate the optical hysteresis and offset.

These are defined as:

$$
\begin{aligned}
& \% \text { Optical Hysteresis }=100 \times \frac{(\mathrm{P} \text { rise }-\mathrm{P} \text { fall })}{\mathrm{P} \text { in }(-)} \\
& \% \text { Optical Offset }=\frac{100 \times(\mathrm{P} \text { average }-\mathrm{P}(-))}{\mathrm{P} \text { in }(-)}
\end{aligned}
$$

Where:	
P in (-)	$=$ Light level incident upon the "-" photodiode on the IC chip (Pin) (-) = $1.0 \mu \mathrm{~W}$).
P rise	$=$ Value of light power level incident upon the " + " photodiode that his required to switch the digital output when the light level is an increasing level (rising edge).
P fall	= Value of light power level incident upon the " + " photodiode that is required to switch the digital output when the light level is decreasing level (falling edge).
P average	$=(\underline{P r i s e}+\mathrm{P}$ fall $)$

